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Abstract The molecular quantum similarity framework is
used to present a new set of Quantum Quantitative Structure–
Properties Relationship (QQSPR) procedures. The theoreti-
cal basis consists of the so-called fundamental QQSPR
equation, deducible from quantum mechanical first princi-
ples, associated with the quantum mechanical expectation
values computation. Approximate solutions of the funda-
mental QQSPR equation within direct and reciprocal spaces,
containing molecular density functions, are studied in a
common framework.
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1 QSPR operators and fundamental QQSPR equation
in original and reciprocal basis

1.1 Quantum similarity measures and quantum similarity
matrices

The typical QQSPR framework [1] starts being built up with
a known basis set of density functions attached to a so-called
molecular core set of cardinality M : P = {ρI (r)}. The
core set Pcan be used in turn to construct a metric matrix by
means of molecular quantum similarity measures (MQSM)
[2], which, in a quite general form, can be defined weighted
by a positive definite operator: W (r), according to the algo-
rithm

Z =
⎧
⎨

⎩
zI J =

∫

D

ρI (r)W (r)ρJ (r)dr = 〈ρI | W |ρJ 〉
⎫
⎬

⎭
. (1)

In the usual practical cases, the unit weighting operator
W (r) = I is chosen, so the simplified metric definition

∀I, J : zI J = 〈ρI | ρJ 〉 =
∫

D

ρI (r)ρJ (r)dr (2)

holds, producing a metric based on overlap quantum similar-
ity measures. In what follows, the metric will be referred to
definition (2) for simplicity, but all that is said can be trans-
ferred to the general definition (1) without problems, by just
substituting the formal metric elements where it is needed.

1.2 Shape functions and quantum similarity measures

A possible alternative computational scheme can be con-
structed using shape functions instead of density functions;
see for example [3]. However, in this case, the similarity
measures of Eqs (1) and (2) are multiplied by the Minkowski
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norms of the elements of the core set, as any shape function
belonging to a new core set S = {σI } is constructed as a
scaled function, defined by means of the algorithm

∀ρI ∈ P → 〈ρI 〉 =
∫

D

ρI (r)dr = NI → σI = N−1
I ρI ,

where {NI } are coincident with the number of particles of
the molecules constituting the core set. The use of shape
functions in order to obtain similarity measures will, thus,
transform the similarity matrix described in Eq (1) into a
shape similarity matrix ZS by employing the trivial matrix
multiplication scheme:

N = Diag(NI ) → ZS = N−1ZN−1.

In fact, this shows how both core set basis set choices are
equivalent, and therefore from now on only density functions
will be considered, as the corresponding algorithms become
the same, except for some trivial scaling factors.

1.3 Quantum similarity operator and fundamental QQSPR
equation

QQSPR problems are solved by defining an operator by
means of the series [4] associated with the elements of the
basis set P:

�(r) = γ (r) +
∑

I

xI ρI (r)

+
∑

I

∑

J

xI xJ ρI (r)ρJ (r) + O(3), (3)

where γ (r) is a known fixed gauge operator, usually chosen
as a null function term, and |x〉 = {xI } is a set of coefficients
to be determined and ordered as a column vector.

In the usual QQSAR problems, the core set P is also
attached to a set of known values of some property, which can
be also ordered as a column vector |p〉 = {pI }. The operator
(3) can be used in the usual quantum mechanical fashion to
compute the property values of the core set. Thus,

∀I : pI = 〈�ρI 〉 =
∫

D

�(r)ρI (r)dr

= 〈γρI 〉 +
∑

J

xJ 〈ρI ρJ 〉 + O(2)

≈ gI +
∑

J

xJ zI J

and so, one arrives at the linear set of equations, which con-
stitute the fundamental QQSPR equation:

∀I : πI = pI − gI =
∑

J

z I J xJ → |π〉 = Z |x〉 . (4)

From this the coefficient vector |x〉 can be obtained, owing to
the existence of the inverse metric matrix Z−1 always being

assured due to the positive definite nature of the metric matrix
Z. Thus,

|x〉 = Z−1 |π〉 → ∀I : xI =
∑

J

z(−1)
I J πI .

1.4 Reciprocal space fundamental equation

Also, the inverse metric matrix is positive definite; that is,
one can write:

Z > 0 → Z−1 > 0,

because whenever the metric diagonalization is performed

U+ZU=�=Diag(θI ) ∧ U+U=UU+ =I ⇒ ∀I : θI ∈R+.

It is easy to prove that the following diagonalization for the
inverse also holds:

U+Z−1U = �−1 = Diag
(
θ−1

I

)
⇒ ∀I : θ−1

I ∈ R+.

As a consequence, the inverse metric matrix Z−1 can be con-
sidered, in turn, a metric matrix. The inverse metric Z−1,
defining the so-called reciprocal space, associated with the
original space with metric Z.

Given the core basis set P , the attached metric can be
written by means of the formal equation:

Z =
∫

D

|P〉 〈P| dr ∧ 〈P| = (ρ1; ρ2; . . . ρN ). (5)

The reciprocal core basis set P(−1) =
{
ρ

(−1)
I

}
is readily

obtained by multiplying definition (5) on both sides by the
inverse metric matrix, yielding:

Z−1 =
∫

D

Z−1 |P〉 〈P| Z−1dr ∧ 〈P(−1)| = 〈P| Z−1

=
(
ρ

(−1)
1 ; ρ

(−1)
2 ; . . . ρ

(−1)
N

)
.

Therefore, one can write for the reciprocal core basis set
functions definition:

∀I : ρ
(−1)
I =

∑

J

z(−1)
I J ρJ .

Moreover, the hybrid metric constructed by the original basis
and the reciprocal one is the unit matrix, and this produces
the following equations:
∫

D

|P〉 〈P(−1)|dr =
∫

D

|P〉 〈P|Z−1dr

=
⎛

⎝

∫

D

|P〉 〈P|dr

⎞

⎠Z−1 = ZZ−1 = I.
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The same holds for the transpose construction:

∫

D

|P(−1)〉 〈P|dr =
∫

D

Z−1 |P〉 〈P|dr

= Z−1

⎛

⎝

∫

D

|P〉 〈P|dr

⎞

⎠ = Z−1Z = I.

Nothing opposes to the possibility that the property operator
can be expressed in terms of the reciprocal basis set, at the
same time that every molecule is represented in reciprocal
space. That is, one can write the equivalent of the operator
(3) in reciprocal space as:

�(−1)(r) = γ (−1)(r) +
∑

I

wI ρ
(−1)
I (r)

+
∑

I

∑

J

wI wJ ρ
(−1)
I (r)ρ(−1)

J (r) + O(3).

And using the reciprocal basis set for describing molecules
in the core set, one can write up to first order terms:

∀I : pI = 〈�(−1)ρ
(−1)
I 〉 =

∫

D

�(−1)(r)ρ(−1)
I (r)dr

= 〈γ (−1)ρ
(−1)
I 〉 +

∑

J

wJ 〈ρ(−1)
I ρ

(−1)
J 〉 + O(2)

≈ g(−1)
I +

∑

J

wJ z(−1)
I J .

So, the first order fundamental QQSAR equation in recipro-
cal space will be expressed in terms of the linear system:

∀I : pI − g(−1)
I = πI =

∑

J

z(−1)
I J wJ →Z−1 |w〉 = |π〉

→ |w〉 = Z |π〉 → ∀I : wI =
∑

J

z I J πJ .

(6)

2 Add-one-molecule-in procedures

2.1 Original space

For the procedures of adding a known molecule with
unknown property to the core set, one can use the follow-
ing partition of the involved matrices:

Z =
(

Z0 |z〉
〈z| θ

)

∧ Z−1 =
(

Z(−1)
0

∣
∣z(−1)

〉

〈
z(−1)

∣
∣ θ(−1)

)

|π〉 =
( |π0〉

π

)

∧ |x〉 =
( |x0〉

x

)

∧ |w〉 =
( |w0〉

w

)

.

The elements of the inverse matrix can be easily obtained as
the following three equations hold:

Z0Z(−1)
0 + |z〉 〈z(−1)| = I0 → Z(−1)

0

= Z−1
0

(
I0 − |z〉 〈z(−1)|

)
,

Z0|z(−1)〉 + θ(−1)|z〉 = |0〉 → |z(−1)〉 = −θ(−1)Z−1
0 |z〉 ,

(7)

〈z | z(−1)〉 + θ(−1)θ = 1 → θ(−1) =
(
θ − 〈z| Z−1

0 |z〉
)−1

,

which lead in turn to the result:

Z(−1)
0 = Z−1

0

(
Z0 + θ(−1) |z〉 〈z|

)
Z−1

0 .

Equations (4) and (6) when partitioned can be rewritten as:

Z0 |x0〉 + x |z〉 = |π0〉
〈z | x0〉 + xθ = π

and

Z(−1)
0 |w0〉 + w|z(−1)〉 = |π0〉

〈z(−1) | w0〉 + wθ(−1) = π,

respectively.
Therefore, one can rearrange both equations in such a way

that the unknown property in the original space could be
expressed as:

|x0〉 = Z−1
0 (|π0〉 − x |z〉) → π

= 〈z| Z−1
0 |π0〉 + x

(
θ − 〈z| Z−1

0 |z〉
)
. (8)

2.2 Reciprocal space

In reciprocal space, using the approximation

Z(−1)
0 ≈ Z−1

0 ,

it can be written up to first order as:

|w0〉 = Z0

(
|π0〉 − w|z(−1)〉

)
→ π

= 〈z(−1)|Z0|π0〉 + w
(
θ(−1) − 〈z(−1)|Z0|z(−1)〉

)
.

However, taking into account the remnant elements of the
reciprocal augmented metric as written in Eq. (7),

π = θ(−1)
(
w

(
1 − θ(−1) 〈z| Z−1

0 |z〉
)

− 〈z | π0〉
)
.

This expression is slightly different from Eq (8), the one
obtained within the original space settings. However, the
exact form in reciprocal space can be written in the following

manner: calling A = Z(−1)
0 → A−1 =

(
Z(−1)

0

)−1
, then
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|w0〉 = A−1
(
|π0〉 − w|z(−1)〉

)
→ π

= w
(
〈z(−1)|A−1|z(−1)〉 − θ(−1)

)
− 〈z(−1)|A−1|π0〉.

(9)

This possesses a form equivalent to Eq (8) with an obvious
change of sign affecting the whole expression.

3 Formulation of the optimization problem

In any of both direct and reciprocal space cases, as expected
from the linear structure of the fundamental equations used
and provided that λ ∈ R, for the unknown sought property it
can be written as:

π = a + bλ. (10)

Also, the equation for the core set unknowns can be written
in general as:

|u〉 = A(|π〉 − λ |a〉), (11)

where A is a positive definite matrix.
The unknown property in Eq (10) will be well-defined

whenever, using Eq. (11), one is able to obtain a well-defined
value of the parameter λ. Because the solution of Eq. (10)
corresponds to an infinite collection of real elements, the
restricted solution in the case of putting one molecule in is
not unique, as from Eq. (11) one can describe several pos-
sible ways to obtain optimal values of the parameter λ . For
instance:

(I) On defining the difference vector |d〉 = |π〉 − λ |a〉,
a difference norm can be constructed:

〈d | d〉 = 〈π | π〉 − 2λ 〈π | a〉 + λ2 〈a | a〉 . (12)

Optimizing expression (12) with respect to the param-
eter provides:

λopt = 〈π | a〉
〈a | a〉 .

Moreover, the optimal value of the difference norm
will be a minimum, as the second order coefficient in
Eq. (12) is a Euclidian norm of a non null vector.

(II) One can consider the norm of vector |u〉, as defined
in Eq. (11), as the objective function to be optimized;
in this case it can be written:

〈u | u〉 = 〈π | A |π〉 − 2λ 〈π | A |a〉 + λ2 〈a| A |a〉 .

So the optimal value of the parameter is now:

λopt = 〈π | A |a〉
〈a| A |a〉 ,

which provides a similar form as in the previous pro-
cedure, weighted by the transformation matrix A.

(III) The scalar product of the vectors {|u〉 ; |π〉} can be
optimized, the objective function is now

|〈π | u〉|2 = |〈π | A |π〉 − λ 〈π | A |a〉|2
= |〈π | A |π〉|2 − 2λ 〈π | A |π〉 〈π | A |a〉

+λ2|〈a| T |a〉|2,

producing

λopt = 〈π | A |π〉
〈π | A |a〉 .

(IV) The scalar product of the vectors {|u〉 ; |a〉} can be
now optimized, in an equivalent way as in the previ-
ous procedure, that is, using the objective function:

|〈t | u〉|2 = |〈a| A |π〉 − λ 〈a| A |a〉|2
= |〈a| A |π〉|2 − 2λ 〈a| A |π〉 〈a| A |a〉

+λ2|〈a| A |a〉|2,

which permits in obtaining the optimal value:

λopt = 〈a| A |π〉
〈a| A |a〉 .

This result, however, corresponds to the same restric-
tion as the one previously studied in procedure (II).
Thus, optimizing the norm 〈u | u〉 seems to be equiv-
alent to optimizing the squared module |〈a | u〉|2.

4 Quadratic restriction

In fact, all the previous procedures amount to the same as
obtaining the optimal value of a second order polynomial in
the parameter λ:

p(λ) = a + bλ + cλ2. (13)

Procedures (I)–(IV) correspond to obtaining unrestricted
solutions of the optimal parameter. Thus, one can think of
optimizing the polynomial (13) taking into account an addi-
tional restriction, which, in principle can be written, as well,
as a second order polynomial:

r(λ) = α + βλ + γ λ2.
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The problem can be solved by using an undetermined
Lagrange multiplier procedure. Defining an augmented func-
tion like:

L[λ, η] = p(λ) − η[r(λ) − k],

where η is a Lagrange multiplier and k a constant the sta-
tionary condition with respect to the parameter λ provides
the Euler equation:

λopt = ηβ − b

2(c − ηγ )

and the Lagrange multiplier can be obtained from the equa-
tion:

r
(
λopt) = k → α + β

(
ηβ − b

2(c − ηγ )

)

+ γ

(
ηβ − b

2(c − ηγ )

)2

= k, (14)

yielding a null second order polynomial:

q(η) = t0 + t1η + t2η
2 = 0,

with the coefficients defined as:

t0 = γ b2 − 2(2(k − α)c + βb)c

t1 = 2(4(k − α)γ c + β(βc − (γ + 1)b))

t2 = γ (4(α − k)γ − β2).

Using elementary algebra,

η = (2t2)
−1

(

−t1 ±
√

t2
1 − 4t2t0

)

will be obtained. Thus to assure a real result, the following
has to be fulfilled:

t2
1 ≥ 4t2t0.

4.1 Simplifications

(1) A simpler result is obtained if, instead of condition (14),
one just forces the second derivative of the augmented
function to be a non-zero constant, say 2s, then

η = c − s

γ
→ λopt = (βc − γ b) − βs

2γ s

is obtained.
(2) Also, a simpler form can be obtained whenever k = α

holds, then two values of the Lagrange multiplier are
possible, as in the general case:

η1 = b

β
∧ η2 = 2

c

γ
− b

β
.

Of course, in the former simplified case (1), the η1 value
is obtained when choosing:

s1 = c − γ b

β

providing a trivial optimal parameter value

λopt = 0;

however, the η2 value is obtained when choosing

s2 = γ b

β
− c = −s1,

thus yielding an optimal parameter

λopt = −β

γ
.

(3) When choosing the restriction polynomial as a first order
one, then γ = 0, and thus

t0 = −2(2(k − α)c + βb)c

t1 = 2β(βc − b)

t2 = 0.

However, this will mean that

η = − t0
t1

= (2(k − α)c + βb)c

β(βc − b)
.

So the optimal parameter can be written as:

λopt = 2(k − α)c2 − b2

2(βc − b)c
.

Taking k = α will further simplify the result to

λopt = b2

2(b − βc)c
.

5 Concluding remarks

The previous computational scheme for the space, generated
by the original core set, has been used within a preliminary
rough test for a molecular core set presenting aquatic toxic-
ity. Such a test will be schematically explained below as a
practical way to describe the procedure, which will be imple-
mented in the future.

The employed molecular set was proposed some years ago
by Verhaar et al. in an initial paper [5] and studied under quan-
tum similarity descriptor QSPR procedures in our laboratory
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[6]. As the essential purpose of the present contribution is just
setting up the appropriate theoretical framework under which
novel QQSPR models can be easily obtained, the authors felt
that this molecular core set could be an interesting and sim-
ple application example, which will be extended elsewhere
and in company of other molecular core sets. The proposed
molecular core set constitutes a toxicity case example, con-
taining a series of 92 compounds, made up of benzene, tolu-
ene, xylene, phenol and aniline derivatives. The geometries
of all the studied compounds have been previously optimized
at the Hartree–Fock computational level with the program
Gaussian 03 [7].

A necessary condition for the QQSPR algorithm to be
applied is that the MQSM matrix has to be positive definite,
otherwise the molecular core basis set will not be linearly
independent and the inverse similarity matrix could be even
singular. In order to obtain such a similarity matrix structure,
previous to the similarity calculations, the molecules in the
core set have to be oriented in space by a template-based
TGSA search [8,9] or by any procedure, which can assure
both optimal similarity measures and unique superposition
geometries for every molecule [10].

Afterwards, in the practical example, Coulomb MQSM
have been calculated according to a slightly modified Eq. (1),
using as weight the Coulomb operator and by employing the
geometries of the template oriented molecules. The restric-
tion procedures I, II and III, mentioned in the present work,
have been implemented for the purpose of obtaining a numer-
ical estimate of the procedure performance. The estimated
toxicity results have been obtained within an add-one-
molecule-in scheme; thus, the only user-dependent param-
eter is the chosen number of molecules present in the core
set in order to predict a given molecular toxicity.

The criterion, which can be used for deciding the optimal
value of the core subset cardinality, is the r-square between
the experimental values and the QQSPR predicted values, as
it has been chosen in the present example. In the light of the
obtained r-square values for the studied sample molecular set,
one can conclude that the optimal number of molecules in
the core-set becomes 3, ensuring in this way a slightly better
result for each of the three employed procedures. Thus, for
the molecular set in this case example, 91 toxicities are pre-
dicted, based on all possible combinations of 3 molecules out
of the remaining 90 molecules. The predicted values adopted
simply correspond to the arithmetic mean value obtained
from these C(90;3) predictions. The r-square values for the
three employed restriction algorithms are: R2(I) = 0.71598,
R2(II) = 0.71612 and R2(III) = 0.71691. One can conclude,
based on the toxicities computed in this manner and taking
into account the large number of molecules studied, that a
satisfactory predictive model has been reached.

It must be stressed that the present and future results will
appear, without further manipulation, from the approximate

solutions of the fundamental QQSPR equation, set up in turn
from the MQSM matrix, associated with the chosen molec-
ular set. The present practical results are quite remarkable,
taking into account that no other data or descriptor manipu-
lation than the raw MQSM over the template oriented mole-
cules are employed to obtain the estimated property, in this
particular schematic case: aquatic toxicity.

In the present proposed calculation procedure, the practi-
cal molecular descriptors are quantum density functions. Use
has been also made of the fact that all the information one
can obtain from a molecular quantum system is contained in
such an individual density distribution.

It can be concluded that QQSPR, based on the quantum
similarity theoretical framework, permits describing simple
computational devices, which can be used to obtain adequate
predictive models as an alternative to classical statistical pro-
cedures.
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